首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6350篇
  免费   392篇
  国内免费   411篇
  2023年   79篇
  2022年   92篇
  2021年   162篇
  2020年   159篇
  2019年   191篇
  2018年   180篇
  2017年   151篇
  2016年   137篇
  2015年   174篇
  2014年   217篇
  2013年   287篇
  2012年   184篇
  2011年   203篇
  2010年   156篇
  2009年   239篇
  2008年   261篇
  2007年   305篇
  2006年   325篇
  2005年   275篇
  2004年   293篇
  2003年   238篇
  2002年   249篇
  2001年   216篇
  2000年   200篇
  1999年   178篇
  1998年   175篇
  1997年   139篇
  1996年   168篇
  1995年   153篇
  1994年   150篇
  1993年   177篇
  1992年   148篇
  1991年   116篇
  1990年   102篇
  1989年   127篇
  1988年   100篇
  1987年   87篇
  1986年   69篇
  1985年   82篇
  1984年   48篇
  1983年   30篇
  1982年   27篇
  1981年   33篇
  1980年   21篇
  1979年   14篇
  1978年   10篇
  1977年   7篇
  1976年   6篇
  1975年   2篇
  1972年   5篇
排序方式: 共有7153条查询结果,搜索用时 15 毫秒
1.
After significant injury, the liver must maintain homeostasis during the regenerative process. We hypothesized the existence of mechanisms to limit hepatocyte proliferation after injury to maintain metabolic and synthetic function. A screen for candidates revealed suppressor of cytokine signaling 2 (SOCS2), an inhibitor of growth hormone (GH) signaling, was strongly induced after partial hepatectomy. Using genetic deletion and administration of various factors we investigated the role of SOCS2 during liver regeneration. SOCS2 preserves liver function by restraining the first round of hepatocyte proliferation after partial hepatectomy by preventing increases in growth hormone receptor (GHR) via ubiquitination, suppressing GH pathway activity. At later times, SOCS2 enhances hepatocyte proliferation by modulating a decrease in serum insulin-like growth factor 1 (IGF-1) that allows GH release from the pituitary. SOCS2, therefore, plays a dual role in modulating the rate of hepatocyte proliferation. In particular, this is the first demonstration of an endogenous mechanism to limit hepatocyte proliferation after injury.  相似文献   
2.
Mechanisms that coordinate growth during development are essential for producing animals with proper organ proportion. Here we describe a pathway through which tissues communicate to coordinate growth. During Drosophila melanogaster larval development, damage to imaginal discs activates a regeneration checkpoint through expression of Dilp8. This both produces a delay in developmental timing and slows the growth of undamaged tissues, coordinating regeneration of the damaged tissue with developmental progression and overall growth. Here we demonstrate that Dilp8-dependent growth coordination between regenerating and undamaged tissues, but not developmental delay, requires the activity of nitric oxide synthase (NOS) in the prothoracic gland. NOS limits the growth of undamaged tissues by reducing ecdysone biosynthesis, a requirement for imaginal disc growth during both the regenerative checkpoint and normal development. Therefore, NOS activity in the prothoracic gland coordinates tissue growth through regulation of endocrine signals.  相似文献   
3.
Recent debate on whether or not mahogany ( Swietenia macrophylla King) is threatened by the international timber trade has focused on the breadth of its range and estimates of the remaining stock of mahogany trees. These data are inadequate to reveal the status of mahogany populations, both because they are incomplete in areal extent and because they do not reveal population parameters such as the existence or density of young trees smaller than commercial size. However, there is sufficient information on the regeneration ecology of mahogany to indicate that under natural conditions this species regenerates in essentially even-aged stands after catastrophic disturbances destroy many or most trees, and, in the case of fires and flooding, saplings and seedlings as well. Adult mahoganies tend to survive these events, and regenerate by shedding seed onto the resulting gaps or clearings. This ecological strategy makes mahogany vulnerable to logging, first because juvenile mahoganies are not found in the understorey, and secondly because logging operations shortcircuit mahogany regeneration processes by selectively removing almost all mahogany seed sources while leaving standing competing vegetation of other species. Listing of mahogany in CITES Appendix II could provide both a mechanism to fill in gaps in information and an incentive to change current practices in favour of silvicultural management to provide for regeneration of this valuable timber species in forests subjected to logging.  相似文献   
4.
5.
6.
Effects of different N/P ratios on several root parameters and on net P uptake were studied in winter wheat, Triticum aestivum cv. Starke II, grown in water culture. In the First experiment N/P ratios of (0/4, 2/3, 4/2, 6/1 and 8/0) were used, and plants were harvested at age 3, 5, 8, 11 and 14 days. In the second experiment N/P ratios of 6/1, 10/1, 15/1, 17/1, 20/1 and 25/1 were applied at two different N,P levels. Root length and number were determined using a digitizer connected to a computer. In the first experiment. the 6/1 N/P ratio gave the largest plants at day 14, and growth decreased with decreasing N/P ratio, The same pattern was found fur lateral root length and root number (seminal and lateral). In the second experiment the root weights decreased with increasing N/P ratio within each level. Lateral root number and overall length decreased with increasing N/P ratio at both levels as did the average lateral root length at the high N,P level. At the low N.P level, average lateral root length was about the same at all N/P ratios. Increasing the N/P ratio increased net uptake of P at the low N,P level, but decreased net P uptake at the high N,P level. Net P uptake increased with increasing P concentration in the roots and then decreased with further increase in P concentration. Net P uptake based on calculated root length [m (g root)−1] showed no significant deviation from weight-based uptake plots. The effect of N and P on root structure is discussed as well as the interaction of N and P in P uptake. The relevance of a proper basis for expressing root activity is stressed.  相似文献   
7.
Certain species of urodeles and teleost fish can regenerate their tissues. Zebrafish have become a widely used model to study the spontaneous regeneration of adult tissues, such as the heart1, retina2, spinal cord3, optic nerve4, sensory hair cells5, and fins6.The zebrafish fin is a relatively simple appendage that is easily manipulated to study multiple stages in epimorphic regeneration. Classically, fin regeneration was characterized by three distinct stages: wound healing, blastema formation, and fin outgrowth. After amputating part of the fin, the surrounding epithelium proliferates and migrates over the wound. At 33 °C, this process occurs within six hours post-amputation (hpa, Figure 1B)6,7. Next, underlying cells from different lineages (ex. bone, blood, glia, fibroblast) re-enter the cell cycle to form a proliferative blastema, while the overlying epidermis continues to proliferate (Figure 1D)8. Outgrowth occurs as cells proximal to the blastema re-differentiate into their respective lineages to form new tissue (Figure 1E)8. Depending on the level of the amputation, full regeneration is completed in a week to a month.The expression of a large number of gene families, including wnt, hox, fgf, msx, retinoic acid, shh, notch, bmp, and activin-betaA genes, is up-regulated during specific stages of fin regeneration9-16. However, the roles of these genes and their encoded proteins during regeneration have been difficult to assess, unless a specific inhibitor for the protein exists13, a temperature-sensitive mutant exists or a transgenic animal (either overexpressing the wild-type protein or a dominant-negative protein) was generated7,12. We developed a reverse genetic technique to quickly and easily test the function of any gene during fin regeneration.Morpholino oligonucleotides are widely used to study loss of specific proteins during zebrafish, Xenopus, chick, and mouse development17-19. Morpholinos basepair with a complementary RNA sequence to either block pre-mRNA splicing or mRNA translation. We describe a method to efficiently introduce fluorescein-tagged antisense morpholinos into regenerating zebrafish fins to knockdown expression of the target protein. The morpholino is micro-injected into each blastema of the regenerating zebrafish tail fin and electroporated into the surrounding cells. Fluorescein provides the charge to electroporate the morpholino and to visualize the morpholino in the fin tissue.This protocol permits conditional protein knockdown to examine the role of specific proteins during regenerative fin outgrowth. In the Discussion, we describe how this approach can be adapted to study the role of specific proteins during wound healing or blastema formation, as well as a potential marker of cell migration during blastema formation.  相似文献   
8.
《Developmental cell》2022,57(12):1512-1528.e5
  1. Download : Download high-res image (149KB)
  2. Download : Download full-size image
  相似文献   
9.
10.
Summary This study was conducted to examine the effect of biotin and thiamine concentrations on callus growth and somatic embryogenesis of date palm (Phoenix dactylifera L.). Embryogenic callus derived from offshoot tip explants was cultured on hormone-free MS medium containing biotin at 0, 0.1, 1, or 2 mg l−1 combined with thiamine at 0.1, 0.5, 2, or 5 mg l−1. Embryogenic callus weight, number of resultant embryos, and embryo length were significantly influenced by thiamine and biotin concentration. The optimum callus growth treatment consisted of 0.5 mg l−1 thiamine and 2 mg l−1 biotin. This treatment also gave the highest number of embryos. Embryo elongation was greatest at 0.5 or 2 mg l−1 thiamine combined with 1 mg l−1 biotin. Embryos from all treatments germinated and regenerants exhibited normal growth in soil. This study provides an insight into the importance of optimizing various culture medium components to overcome in vitro recalcitrace of date palm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号